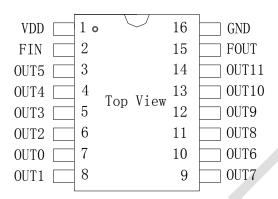

特性描述

TM1827是固定花样12通道LED恒流驱动IC。本产品内部自带振荡器,PWM输出进行辉度渐变。芯片有同步输入和同步输出端,可接AC同步或多个芯片自同步。上电复位后,输出PWM波形,进行12通道的LED依次循环控制,实现流星、水滴效果。芯片内部自带5V稳压管,OUT端口采用恒流16mA驱动。外围器件简洁、设计简单,适合装饰彩灯。本产品性能优良、质量可靠。

功能特点

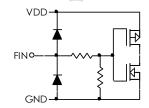
- ▶ 采用高压功率CMOS工艺
- ▶ VDD端内置5V稳压管
- ▶ 12个0UT输出端口
- ▶ OUT恒流输出16mA,端口耐压24V
- ▶ PWM辉度调节
- ▶ 内置振荡器,上电复位后芯片自动输出PWM
- ▶ VDD典型工作电压: 5.0V
- ▶ 适用领域:户内、户外LED流星、水滴效果装饰
- ▶ 芯片有同步输入和同步输出端,可接AC同步或多个芯片自同步
- ▶ 封装形式: DIP16、SOP16

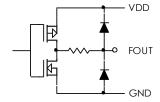
内部结构框图

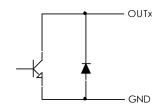


©Titan Micro Electronics www.titanmec.com

1


管脚排列




管脚功能

管脚名称	管脚序号	I/0	功能说明
GND	16		接系统地
VDD	1		芯片电源输入,内置5V稳压管
FIN	2	I	同步输入脚,用于AC同步或接受其它芯片的F0UT
FOUT	15	0	同步输出脚,接其它芯片的FIN,频率50Hz
OUT0	7	0	PWM输出端0,N管开漏恒流输出
OUT1	8	0	PWM输出端1,N管开漏恒流输出
OUT2	6	0	PWM输出端2,N管开漏恒流输出
OUT3	5	0	PWM输出端3,N管开漏恒流输出
OUT4	4	0	PWM输出端4,N管开漏恒流输出
OUT5	3	0	PWM输出端5,N管开漏恒流输出
OUT6	10	0	PWM输出端6,N管开漏恒流输出
OUT7	9	0	PWM输出端7,N管开漏恒流输出
OUT8	11	0	PWM输出端8,N管开漏恒流输出
OUT9	12	0	PWM输出端9,N管开漏恒流输出
OUT10	13	0	PWM输出端10,N管开漏恒流输出
OUT11	14	0	PWM输出端11,N管开漏恒流输出

输入输出等效电路

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作和焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

©Titan Micro Electronics www.titanmec.com

极限参数 (1) (2)

参数名	宮 称	参数符号	极限值	单 位
逻辑电池	原电压	VDD	$-0.5\sim+7.0$	V
输入端电压范围	FIN	Vfin	-0.5∼VDD+0.5	V
输出端电流(DC)	OUTO-OUT11	Iout	16	mA
输出端电压范围	OUTO-OUT11	Vout	-0.5∼+24.0	V
同步信号频率	FIN	Ffin	500	Hz
工作温度	度范围	Topr	-40∼+85	$^{\circ}$ C
储存温度范围		Tstg	−55~+150	°C
人体模式	(HBM)	ESD	2000	V
机器模式	(MM)	EOD	200	V

- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值;
- (2) 所有电压值均相对于系统地测试。

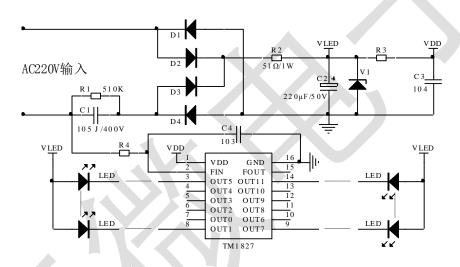
推荐工作条件

在-40℃	[~] +85℃下测试,除	非另有说明		TM1827		单位
参数名称	参数符号	测试条件	最小值	典型值	最大值	半世
电源电压	VDD	VDD 到电源不串电阻	4.0	5. 0	6. 0	V
VDD 稳压管电流	ICC	正常工作电压下的电流	1. 0	8.0	15. 0	mA
FIN 电压输入范围	Vfin		-0.5		VDD+0. 7	V
OUT 输出耐压范围	Vout	OUT=OFF	-0.5		24.0	V
FOUT 脚输出频率	Ffout	FIN 悬空		50		Hz
FIN 脚输入频率	Ffin			50	500	Hz
工作温度范围	Ta		-40		+85	$^{\circ}\mathbb{C}$
工作结温范围	Tj		-40		+125	$^{\circ}\mathbb{C}$

电气特性

在 VDD=5. 0V 及工作温度为-40℃~+85℃下测试,典型值在 VDD=5. 0V 和 Ta=+25℃条件下得出,除非另有说明 TM1827								
参数名称	参数符号	测试条件	最小值	典型值	最大值			
高电平输出电压	Voh		VDD-0. 5	VDD	VDD+0. 5	V		
低电平输出电压	Vol				0. 4	V		
高电平输入电压	Vih	VDD=5. OV	3. 5		VDD	V		
低电平输入电压	Vil	VDD=5. OV	0		1. 35	V		
静态电流	Idd	OUTO-OUT11 开路,FIN, FOUT 悬空,VDD=4.0V		1.0		mA		
恒定输出电流范围	Iout	OUTO-OUT11 = ON , VOUTn =3V		16		mA		
恒流误差 (通道对通道)	Δ Iout0	OUTO-OUT11 = ON , VOUTn =3V			±6	%		
恒流误差 (芯片对芯片)	Δ Iout1	OUTO-OUT11 = ON , VOUTn =3V			±6	%		
热阻值	Rth(j-a)		79. 2		190	$^{\circ}\! \mathbb{C}/\mathbb{W}$		
消耗功率	Pd	Ta=25° C			250	mW		

©Titan Micro Electronics www.titanmec.com


V1.4

开关特性

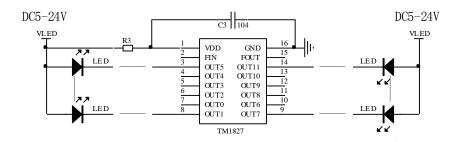
在 VDD=5. 0V 及工作温 VDD=5. 0V 和 Ta=+2			TM1827		单位	
参数名称	参数符号	测试条件	最小值	典型值	最大值	
PWM 频率	Fout	FIN 悬空		800		Hz
花样周期时间	Tt	FIN 悬空		1		S
单通道开启时间	T1	FIN 悬空		450		ms
通道总开启时间	T2	FIN 悬空		900		ms
FOUT 输出频率	Ffout	FIN 悬空		50		Hz

应用信息

1、交流供电模式

外围元件参数配置—参考

	月日2日 DA DA DA DA DA DA DA D								
元件符号	最小值	典型值	最大值	备 注	单位				
C1	0.5	1		在一定交流电压下,提供的总电流取决于阻容电容	μF				
R1	100	510		C1 的放电电阻	KΩ				
R2	0	51		限流电阻,可省略	Ω				
C2	100	220		稳压电容	μF				
R3				VDD 稳压电阻,依据供电 VDD 选择					
C3	,	104		芯片 VDD 稳压滤波电容,不可省					
C4		103		FIN 输入滤波电容,不可省					
V1			24	依据需要选择稳压值,注意稳压管的功率	V				
R4	50	100	100		KΩ				


220V/50Hz交流电情况下,通常电容C1的容量C与总电流ILED的关系可近似认为: C=14.5×ILED。其 中,C的单位是 µF,ILED的单位是A。当不同OUT端口间LED灯珠总压降不同时,例如虽然每个OUT端口都 串3个LED灯珠,但是部分端口串红色LED,部分端口串绿色LED,部分端口串蓝色LED,则串红色LED的通 道的灯珠总压降较低,此通道应串接适当的电阻,否则可能因阻容电路驱动不足而导致花样显示异常。 设OUTO-OUT11各通道灯珠总压降分别为VO-V11, Vmax为其中的最大值,则OUTn通道应串接电阻的阻值计 算公式为:

Rn=(Vmax- Vn)/Iled, 其中Iled=16mA。

4 ©Titan Micro Electronics www.titanmec.com

V1.4

2、直流供电模式

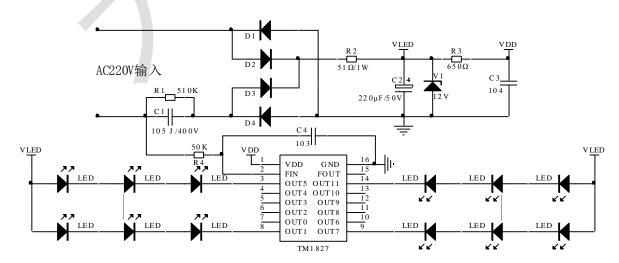
- 注意: 1、应根据具体LED灯性能参数和使用的灯珠数量来配置元件参数;
 - 2、灯珠排列顺序必须是OUTO-OUT11,建议每个OUT端口串接1路灯珠。

芯片正常工作时流过VDD内部稳压管的电流范围为1.0 $mA\sim15mA$,计算R3稳压电阻的阻值公式为:R3=(VLED-VDD)/Idd。假设选择流经VDD的电流Idd为10mA,稳压值VDD为5.5V,则电源供电电压不同情况下的R3电阻值如下表:

各电压下 R3 的参考阻值

电源电压 DC	建议电源接口与 VDD 间连接电阻 R3 值			
5V	0Ω(无需接电阻,内部稳压管不工作)			
6V	50 Ω			
9V	350Ω			
12V	650 Ω			
24V	1.8ΚΩ			

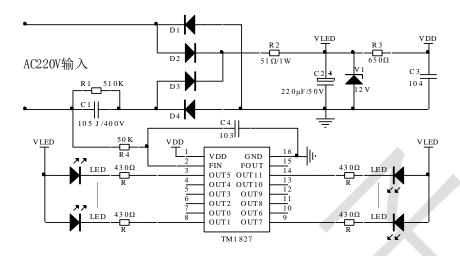
FIN通过采样电阻R4,直接采样220V交流市电用于芯片的同步信号输入。FIN内部设有电压钳位电路,可以将FIN脚电压钳位在6V左右,FIN输入电流建议控制在2mA到5mA之间,建议采样电阻阻值在100K到50K之间,选择的R4阻值越小,消耗的功率越大。

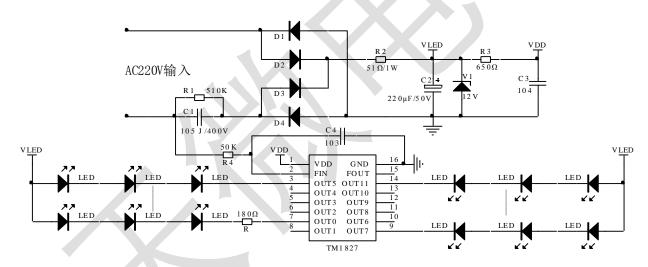

由于芯片OUT口恒流输出,需要在端口加一定的电压才能进入恒流区域。所以为了保证芯片OUT口工作在恒流状态下,同时考虑到芯片功耗,OUT口加的电压应该保持在2V左右,且不能高于6V。当高于6V时,应在灯珠上串接电阻,阻值计算公式为:

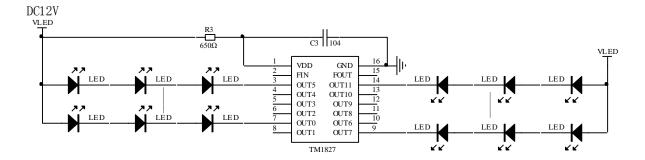
R = (VLED-nVled-2)/Iled,

其中Iled=16mA, nVled为端口的LED灯珠数量n和单个LED灯压降Vled的乘积。

3、应用实例

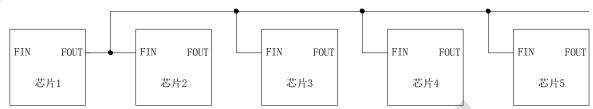

(1)每个驱动通道串接3个蓝色LED灯珠,稳压管V1选用12V稳压值,则每个通道灯珠总压降为9V左右,驱动端口电压为12V-9V=3V,无需串接电阻,电路原理图如下:


©Titan Micro Electronics www.titanmec.com


(2)每个驱动通道接1个蓝色LED灯珠,稳压管V1选用12V稳压值,则每个通道灯珠压降为3V左右,驱动端口电压为12V-3V=9V,需串接电阻,阻值R= $(12V-3V-2V)/16mA \approx 430 \Omega$,电路原理图如下:

(3) AC220V阻容供电时,每个驱动通道串接3个LED灯珠,0UT0-0UT11端口串接的灯珠颜色分别为R、G、B、R、G、B、R、G、B、R、G、B,稳压管V1选用12V稳压值,单个R颜色灯珠压降为2V左右,单个G或B颜色灯珠压降为3V左右,则串接R颜色灯珠的通道需串接电阻,阻值R=(3V×3-2V×3)/16mA \approx 180 Ω ,电路原理图如下:

(4) 开关电源输出DC12V供电时,每个驱动通道串接3个LED灯珠,0UT0-0UT11端口串接的灯珠颜色分别为R、G、B、R、G、B、R、G、B、R、G、B,由于电源驱动能力充足,所以串接R颜色灯珠的通道无需串接电阻,电路原理图如下:

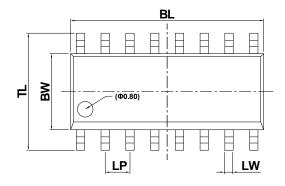


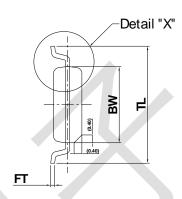
©Titan Micro Electronics www.titanmec.com

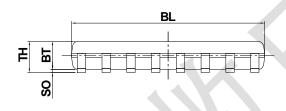
4、芯片自同步

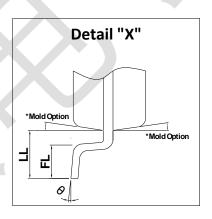
FIN悬空状态下,花样变化由芯片内部自行控制。由于工艺上的偏差,芯片输出PWM变化的频率会有所差异,多个芯片的输出可能会不同步。此时可以用芯片的FOUT输出信号作为其他芯片的同步信号输入,实现芯片花样变化的自同步。在此情况下,不推荐使用级联方式同步,可以使用下图连接方式实现自同步:

说明:在上图的连接方式中,由于随着连接芯片的数量和芯片之间距离的增加会导致芯片1的FOUT脚至各IC的FIN脚的导线长度也会相应的增加,这就必然会导致叠加在同步频率的噪声增大,因此建议根据实际的需要与不同的干扰环境下选择连接导线的长度,在满足要求的情况下,导线的长度越短越好。


注意: 使用阻容降压电路时, 需要注意以下事项:

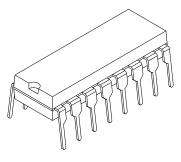

- 1、电路未和220V交流高压隔离,请注意安全,严防触电;
- 2、限流电容C1应该接在火线上,且耐压要足够大(400V以上),并加上放电电阻R1;
- 3、注意稳压二极管功耗,禁止在稳压管开路的情况下使用;
- 4、严禁开路上电。

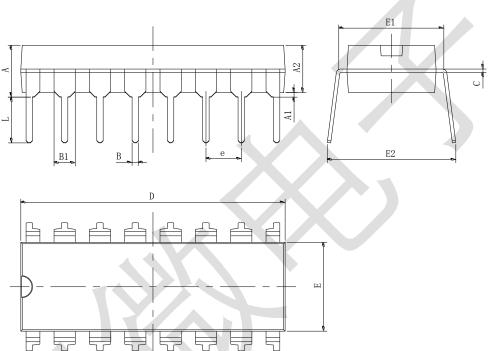




封装示意图(SOP16)

Dimensions


Item	BL	BW	πL	LW	LP	FT	BT	so	TH	LL	FL	Θ
表示	总长	胶体宽度	跨度	脚宽	脚间距	脚厚	胶体厚度	站高	胶体高度	单边长	脚长	脚角度
Unit	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	۰
Spec	10.00 (9.90) 9.80	4.00 (3.90) 3.80	6.20 (6.00) 5.80	0.430 TYP	1.270 TYP	0.250 (0.200) 0.150	155 (145) 125	0.200 (0.150) 0.060	1.650 Max.	125 (104) 0.80	0.80 (0.60) 0.45	8 (4) 0


©Titan Micro Electronics www.titanmec.com

8

封装示意图(DIP16)

Comb. 1	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	3. 710	4.310	0. 146	0. 170	
A1	0. 510		0.020		
A2	3. 200	3.600	0. 126	0. 142	
В	0. 380	0.570	0.015	0. 022	
B1	1. 524 (BSC)		0.060	(BSC)	
C	0. 204	0.360	0.008	0.014	
D	18. 800	19. 200	0.740	0. 756	
Е	6. 200	6.600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540	(BSC)	0. 100	(BSC)	
L	3. 000	3.600	0.118	0. 142	
E2	8. 400	9.000	0. 331	0.354	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)

©Titan Micro Electronics www.titanmec.com V1.4