1. 特性描述

TM1748是一种具有8个触摸按键扫描功能的LCD驱动控制IC。该芯片具有较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。芯片内部集成有MCU数字接口、数据锁存器、按键扫描、LCD驱动和有源蜂鸣器驱动等电路,具有高电源电压抑制比,可减少按键检测错误的发生,具有自动校准功能,抗电压波动等特性。主要适用于触摸显示等方案。本产品性能优良,质量可靠。

2. 功能特点

- ▶ 可以支持8个触摸按键
- ▶ 自动校准功能
- ▶ 内置驱动有源蜂鸣器控制程序
- 最长按键输出时间检测
- ▶ 具备抗电压波动功能
- ▶ 支持标准I2C通信方式
- ▶ 外接电容调整灵敏度
- ➤ 采用低功耗CMOS工艺
- ▶ 4路LED驱动,具有64级PWM,可用于LCD幻彩背光驱动;
- ▶ 1/3LCD驱动偏压
- ▶ LCD工作电压可调
- ▶ 可以驱动28*4的LCD显示屏
- ▶ 振荡方式:内置RC振荡
- ▶ 封装形式: SSOP48

3. 管脚排列

1	BZ	VCC 48
2	SCL	GND 47
3	SDA	KEY8 46
4	GND	KEY7 45
5	VDD	KEY6 44
6	SEG27	KEY5 43
7	SEG26	KEY1 42
8	SEG25	KEY2 41
9	SEG24	KEY3 40
10	SEG22/PWM2	KEY4 39
11	SEG23/PWM3	COM0 38
12	SEG20/PWM0	COM1 37
13	SEG21/PWM1	COM2 36
14	SEG19	COM3 35
15	SEG18	SEG0 34
16	SEG17	SEG1 33
17	SEG16	NC 32
18	SEG15	SEG2 31
19	SEG13	SEG4 30
20	SEG12	SEG6 29
21	SEG14	SEG3 28
22	SEG11	SEG5 27
23	SEG10	SEG8 26
24	SEG9	SEG7 25

©Titan Micro Electronics www.titanmec.com

4. 管脚功能

引脚名称	引脚序号	I/0	功能说明
B Z	1	0	有源蜂鸣器驱动
SCL	2	I	I2C通讯时钟输入
SDA	3	I/0	I2C通讯数据输入/输出
GND	4		逻辑电源负极
VDD	5		逻辑电源正极
SEG27-SEG24	6-9	0	LCD 段(segment)驱动口
SEG22/PWM2	10	0	可分别配置成段输出或PWM输出端口,作为PWM输出的时候,具有64级PWM,可用于LCD的背光驱动
SEG23/PWM3	11	0	可分别配置成段输出或PWM输出端口,作为PWM输出的时候,具有 64 级PWM,可用于LCD的背光驱动
SEG20/PWM0	12	0	可分别配置成段输出或PWM输出端口,作为PWM输出的时候,具有64级PWM,可用于LCD的背光驱动
SEG21/PWM1	13	0	可分别配置成段输出或PWM输出端口,作为PWM输出的时候,具有64级PWM,可用于LCD的背光驱动
SEG19-SEG0	14-31, 33, 34	0	LCD 段(segment)驱动口
NC	32		内部未接线
COM3-COM0	35-38	0	LCD 共用端(common)驱动口
KEY4-KEY1	39-42	I	触摸按键输入口 (未使用需接地)
KEY5-KEY8	43-46	I	触摸按键输入口 (未使用需接地)
GND	47		逻辑电源负极
VCC	48	- /X	逻辑电源正极

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

4.1. 极限工作条件

参数名称	参数符号	极限值	单位
电源电压	V_{DD}	-0.3∼+5.5	V
输入电压范围	$V_{\rm IN}$	-0.3∼VDD+0.3	V
工作温度范围	Topr	-40∼+85	$^{\circ}$
保存温度范围	tstg	$-50\sim$ +125	$^{\circ}$
总功耗		500	mW

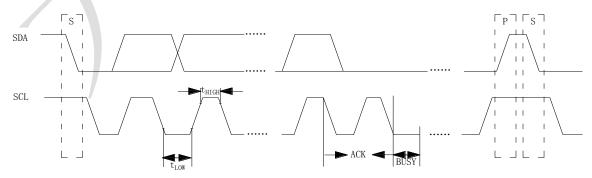
- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。
- (2) 所有电压值均相对于系统地测试

4.2. 推荐工作条件

在 Ta=+2	5℃下测试,图		TM1748		单位	
参数名称	参数符号	测试条件	最小值	典型值	最大值	中位
电源电压	V_{DD}		-	5	_	V

©Titan Micro Electronics

Ī	工作温度	Ta	-40		+85	$^{\circ}$
	工作结温	Тj	-50	_	+125	$^{\circ}\mathbb{C}$


5. 芯片参数

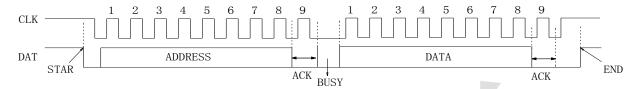
5.1. 电气特性

在 Ta=+25°	C下测试,VI	D=5V,除非另有说明		TM1748		* *
参数名称	参数符号	测试条件	最小值	典型值	最大值	単位
SCL/SDA引脚高电平输	V_{IH}	VDD=5V	3. 5	-	5	V
入电压	VIH		0.7VDD	-	VDD	
SCL/SDA引脚低电平输	V_{IL}	VDD=5V	0	-	1.5	V
入电压	VIL		0		0. 2VDD	V
BZ蜂鸣器驱动电流	IBZ	VDD=3V	-	4	20	mA
DL蚌屿命业列电机	1 BZ	VDD=5V		-	30	mA
LCD COM输入电流	IOL1	COMO~COM3	150	250	_	11A
202 0011 1177	1021	Vo=0.5V	100	200		
LCD COM输出电流	IOH1	COMO~COM3	-120	-150	_	uA
		Vo=4.5V COMO~COM3				
LCD SEG输入电流	IOL2	Vo=0.5V	120	200	-	uA
LCD SEG输出电流	I0H2	COMO~COM3	-70	-100		11.Λ
LCD SEG棚田电机	1002	Vo=4.5V	-70	-100	_	uA
		PWMO~PWM3				
PWM低电平输入电流	IOL3	(设定成PWM输出状态)	30	60	_	mA
		Vo=1V				
		PWMO~PWM3				Ma
PWM高电平输出电流	IOH3	(设定成PWM输出状态)	-15	-25	_	
		Vo=3V				

5.2. 开关特性

<u> </u>									
在 Ta=+25℃下	在 Ta=+25℃下测试,VDD=2.5V~5.5V,除非另有说明 TM1748 ±4.4								
参数名称	参数符号	测试条件	最小值	典型值	最大值	单位			
最长按键保持间	tкн	4	60	64	68	S			
Start位低电平时间	TSTART		-	_	tns	S			
SCL低电平时间	TLOW	'	5	_	_	us			
SCL高电平时间	THIGH		5	_	_	us			
ACK最短时间	ACK		10	_	_	us			
BUSY最短时间	BUSY		10	_	_	us			

6. IIC通讯方式说明


TM1748 提供了从机I2C通信接口(Slave),支持与标准I2C匹配的总线协议。TM1748 的通信地址为 0xA0。主控可以读取触摸按键状态信息,也可以写入驱动数码管显示的数据和驱动蜂鸣器的数据。I2C ©Titan Micro Electronics www.titanmec.com

的速率支持标准模式 100KHZ。

读取按键信息后,至少间隔 10ms以上,才能再次读取按键信息。

写入显示数据至少间隔 1ms,写入其他数据后至少间隔 200us,才能再次写入数据到TM1748 中。 I2C的时序图:

从机忙碌:

一字节数据(8bit +ACK)完成后,从机开始处理数据(从机忙碌),无法接收下一字节数据,此时从机将SCL拉低,主机需等待SCL为高电平时才可以继续进行数据传送。

I2C数据格式:

TM1748 芯片支持单个数据读出。Write Slave Address为 0xA0, Read Slave Address为 0xA1, Address 为所读取的寄存器地址,DATA1 即为读取的数据。读出一个数据格式为:

Start	Write Slave	A C	Address	A C	Start	Read Slave	A C	DATA1	NA Stop
B car c	Address	K	naar obb	K	Board	Address	K	Diffi	CK Stop

主机对TM1748 芯片写入数据,支持单个数据写入或多个数据连续写入。写入多个数据的格式为:

		Α		Α		A		Α			. А	
Start	Write Slave Address	C K	Address	C K	DATA1	C K	DATA2	C K	•••	DATAn	C K	Stop

为了减少由于接收错误时钟源而产生的I2C 锁定问题,TM1748 提供了超时功能。在约 63ms内如果I2C 总线未接收到时钟源,则I2C电路和寄存器将会复位。

超时计数器在I2C 总线接收到 "START"信号和"地址匹配"条件时,超时计数器开始计数,并在 SCL 下降沿处清零。在下一个SCL 下降沿来临之前,如果等待时间大于I2CTOC 寄存器设定的超时时间,则会发生超时现象。当I2C "STOP"条件发生时,超时计数器将停止计数。

IIC超时可能会导致转发的数据出现异常,故使用时需避免出现IIC超时的现象产生。

7. 功能说明

7.1. 外部MCU通过I2C访问寄存器,可以读取触摸按键状态信息、写入显示命令和数据、驱动蜂鸣器发出声音、进入和唤醒休眠模式。TM1748 寄存器功能说明:

序号	TM1748 寄存器地址	R/W	初始值	功能说明
1	0xBD	W	0x00	显示模式设置
2	0xBE	W	0x40	数据命令设置
3~16	0xC0 [∼] 0xCD	W	0x00	显示内容设置
4	0xBF	W	0x00	显示控制命令设置
19	0xCE	W	0x00	蜂鸣器响声时间设置
20	0xCF	W	0x00	休眠模式设置
21	0xF0	R	0x00	触摸按键寄存器

(注: W为寄存器可写入, R为寄存器可读取)

©Titan Micro Electronics www.titanmec.com

(1) TM1748中的寄存器0xBD用来进行功能设计,工作模式设置好后,不允许在使用中切换工作模式。

MSB							LSB
B7	B6	B5	B4	В3	B2	B 1	B0
0	0	b5	b4	0	0	0	0

b5b4	PWM输出口/段输出设置
00	SG20、SG21、SG22、SG23
01	SG20、SG21、SG22、 PWM3
10	SG20、SG21、PWM2、PWM3
11	PWM0、PWM1、PWM2、PWM3

(2) TM1748中的寄存器0xBE用来设置数据的读写和地址增加模式,该指令用来设置数据写和读。

MSB LSB												
	В7	В6	B5	B4	В3	B2	B 1	В0	功能	说明		
	0	1					0	0	数据读写模式设置	写数据到显示寄存器		
	0	1					0	1		写数据到 PWM 寄存器		
	0	1					1	0		读键扫数据		
	0	1	无关项	页,填			1	1		读SW开关输入口数据		
	0	1	(0		0			地址被加替士江里	自动地址增加		
	0	1				1			地址增加模式设置 测试模式设置 (内	固定地址		
	0	1			0		X			普通模式		
	0	1		4	1				部使用)	测试模式		

- B1和B0位不允许设置10或11。因显示数据的存储采用了地址自加模式,必须设置为0x40和041。
- (3) TM1748中的寄存器0xC0~0xCD用来设置起始显示地址和显示内容数据。有效地址最多为14位 (COH-CDH)。例如发送0xC0和14字节的显示内容,则显示地址C0-CD显示内容依次为此14字节的数据。

								対应管脚位		
СОМО	COM1	COM2	COM3	COMO	COM1	COM2	COM3	存储器地址		
	SE	G0			SE	G1		00H		
	SE	G2			SE	01H				
	SE	G4			SE	G5		02H		
	SE	G6			SE	G7		03H		
	SE	G8			SE	G9		04H		
	SEC	G10			SEC	05H				
	SEC	G12			SEC	06H				
	SEC	G14			SEC	07H				
	SEC	G16			SEC	08H				
	SEC	G18			SEC	09H				
	SEC	G20			SEC	0AH				
	SEC	G22			SEC	0BH				
	SEC	G24			SEC	0CH				
	SEC	G26			SEC	0DH				
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7			

©Titan Micro Electronics www.titanmec.com

如果数据设置指令是写数据到显示寄存器模式,那么本次地址设定的是显示寄存器地址,最多有效地址为00H-0DH:

如果数据设置指令是写数据到PWM控制寄存器模式,那么本次地址设置PWM寄存器的地址,有效地址为00H-03H。

(4) TM1748 中的寄存器 0xBF, 用来设置显示的开关以及电压。

MSB			LSB				
В7	В6	В5	B4	В3	В2	B1	В0
1	0	0	b4	b3	b2	b1	b0

b4: 显示开关设置位; 为1显示开, 为0显示关

b3: LCD驱动偏压设置位; 为1设为全屏点亮; 为0设为1/3偏压

b2b1b0: LCD工作电压设置位;

当b2b1b0=111时,工作电压=VCC(VCC为芯片的工作电压)。当VCC=5V,调节电压的范围约是 2.88-5V。

- * 上电后, b4b3b2b1b0默认为00111
- (5) TM1748中的寄存器0xCE,用来设置有源蜂鸣器的驱动时间。TM1748内置有源蜂鸣器驱动控制程序。外部MCU通过对寄存器0xCE写入数据可打开蜂鸣器。蜂鸣器的驱动时间有255级调节,通过改变DATA值实现级数调节(写入数值范围: 0x00-0xFF)。每级蜂鸣时间为40ms。

IIC通信格式示意如下:

	1	$\neg A$		-, A -		Аг	
Start	OxAO	C K	0xCE	C K	DATA	C K	Stop

(6) TM1748 中的寄存器 0xCF, 用来设置芯片的休眠模式。芯片具有两种工作模式, 休眠模式和正常工作模式。

进入休眠有两种方式: 一是上电后 8S 无按键按下进入休眠; 二是 IIC 通信,向寄存器 0xCF 写入 0x01,大约 1S TM1748 进入休眠。

唤醒休眠有两种方式:一是有按键被触摸会唤醒休眠;二是IIC通信,正确的IIC通信格式会立刻唤醒休眠。唤醒休眠的写操作若为TM1748向外带显示芯片的转发内容,则会被转发;正确的IIC读操作则会得到当前按键触摸信息。

(7) TM1748中的寄存器0xF0, 用来用作IIC读取按键触摸数据的寄存器。Bit7~Bit0用于指示相应的触摸按键Key8~Key1是否被触摸。(注: 若所读寄存器不为0xF0,则返回值为0xFF。)

读取格式如下:

(Write Slave Address为 0xA0, Read Slave Address为 0xA1)

Bit0: Key1 状态 (1 = 触摸, 0= 未触摸)

Bit1: Key2 状态 (1 = 触摸, 0= 未触摸)

Bit2: Key3 状态 (1 = 触摸, 0= 未触摸)

Bit3: Key4 状态 (1 = 触摸, 0= 未触摸)

Bit4: Key5 状态 (1 = 触摸, 0= 未触摸)

Bit5: Kev6 状态 (1 = 触摸, 0= 未触摸)

Bit6: Key7 状态 (1 = 触摸, 0= 未触摸)

Bit7: Key8 状态 (1 = 触摸, 0= 未触摸)

©Titan Micro Electronics www.titanmec.com

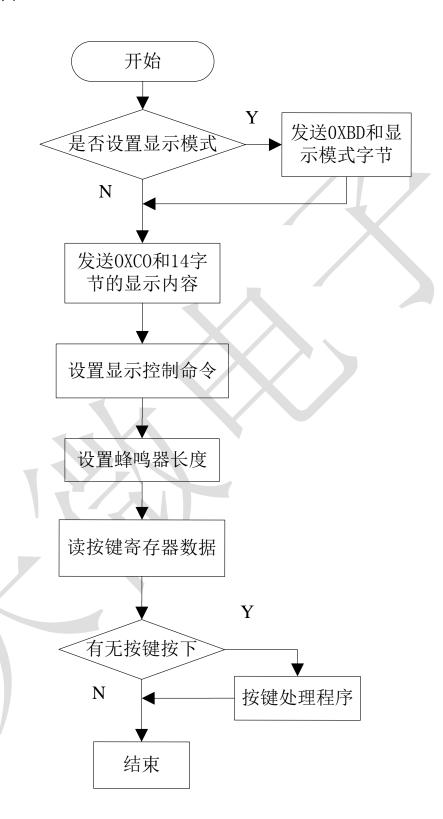
V1.1

最长按键持续时间说明

为尽量减少如不小心碰触到感应电极等此类的无意按键检测,芯片内部设置了最长按键持续时间功能。当某个触摸按键按下时,内部定时器开始计时,一旦按键按下的时间过长,超过大约 64s后,触摸芯片会忽略该被触摸键的状态,重新校准来获取新的基准值,同时输出状态重置为初始状态。

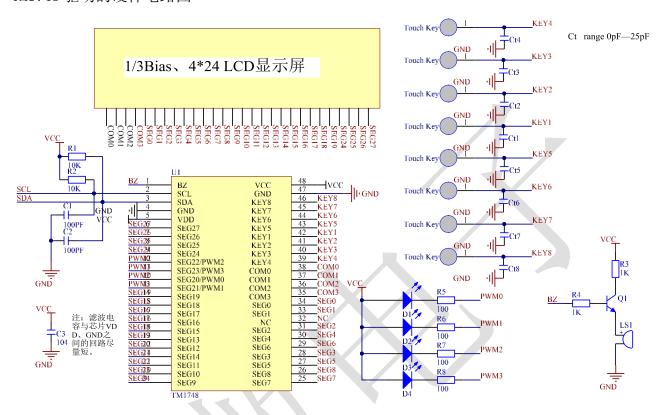
自动校准功能说明

上电后,芯片会进行初始化,取得第一次基准值,没有按键被按下,触摸芯片在固定的时间周期到后,将自动校准基准值,使得基准值可以根据外界环境进行动态的变化。


灵敏度说明

灵敏度调整:在大多数应用中根据用户的需求调整触摸按键的灵敏度是一个非常重要的考虑因素。可通过改变PCB电极的大小及铺地面积(电极正下方),或者改变绝缘材料的厚度调整感度。同时TM1748提供了触摸输入引脚上外加电容的方式来调整不同的灵敏度需求。

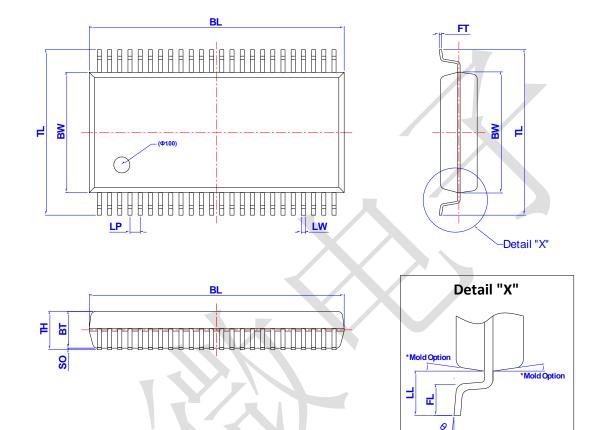
8. 程序设计流程图:



©Titan Micro Electronics www.titanmec.com

9. 应用电路图

TM1748 驱动的硬件电路图



©Titan Micro Electronics www.titanmec.com

V1.1

10. SS0P48 封装示意图

Dimensions

Item	BL	BW	TL	LW	LP	FT	ВТ	so	TH	LL	FL	Θ
表示	总长	胶体宽度	跨度	脚宽	脚间距	脚厚	胶体厚度	站高	胶体高度	单边长	脚长	脚角度
Unit	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	۰
Spec	15.97 (15.87) 15.77	7.59 (7.49) 7.39	10.50 (10.30) 10.10	0.254 TYP	0.635 TYP	0.170 (0.152) 0.130	2.38 (2.28) 2.18	0.250 (0.150) 0.100	2.530 Max.	150 (140) 130	0.90 (0.80) 0.64	8 (4) 0

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)

©Titan Micro Electronics www.titanmec.com