

特性描述

TA1671 是一种 4 通道的 LED 驱动控制专用电路, 主要应用在 LED 大屏幕显示模组驱动 电路上,功能集成 74HC245D,74HC138D 及 4953 等芯片,同时集成输出保护功能(无需 74HC04D), 能配合 TM74HC595 完成显示功能, 简化原有驱动电路结构方式, 芯片内置上拉电 阻, 使在 PCB布线上更简洁, 性能更加可靠、稳定。

功能特点

- ➤ 采用 CMOS 工艺, 4 个 4A 电流源输出通道, 适用于 P10 板 (1R,32X16)
- ▶ 内置 500KHz 的时钟振荡器
- ➤ GEI 外部使能控制输出
- ▶ 在 16mS AI 不更新数据时看门狗自动关闭 PO-P3 的输出
- ➤ CLKI、LEI 输入内置上拉电阻
- ▶ 封装形式: HSOP28

绝对最大额定值范围 (1) (2)

(在 25℃下, Vss=0V) 除非另有说明

参数	符号	范围	单位
逻辑电源电压	Vdd	-0.5~+7.0	V
逻辑输入电压	VI	-0.5~VDD+0.5	V
工作温度	Topt	-40~+85	°C
存储温度	Tstg	-65~+150	°C

极限参数 (Ta=25℃, Vss=0V)

(1) 以上表中这些等级,片在长时间使用条件下,可能造成器件永久性伤害,降低器件的可靠性。天微电子不建 议在其它任何条件下,芯片超过这些极限参数工作。(2) 所有电压值均相对于系统地测试

推荐工作条件范围

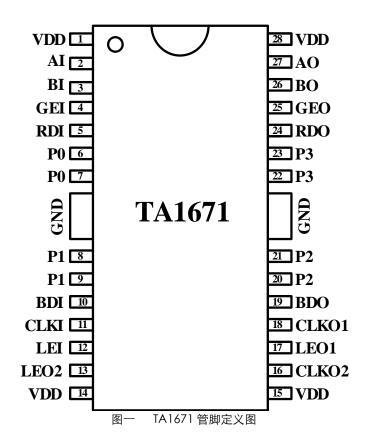
(在-40℃~+85℃下, Vss=0V) 除非另有说明

参数	符号	Min	Тур	Max	单位	测试条件
逻辑电源电压	Vdd		5		٧	-
高电平输入电压	V _{IH}	3.7	-	Vdd	٧	Vdd=5V
低电平输入电压	V _{IL}	0	-	1.5	٧	Vdd=5V

表二 正常工作参数 (Ta=-40℃~+85℃, Vss=0V)

电气特性

(在 VDD=5.0V, VSS=0V 和-40℃~+85℃下) 除非另有说明


参数	符号	Min	Тур	Max	单位	引脚	测试条件
高电平输出电流	V_{OH1}	20	21.6	23	mA	LEO2,CLKO2	Vo=4.5V

	V_{OH2}	10	15	20	mA	OEO,LEO1,CLKO1,AO,BO	
	V _{OH3}	4.4	4.5	4.6	Α	P0~P3	Vo=4.7V
低电平输出电压	V_{OL1}	25	28.4	30	mA	LEO2,CLKO2	Vo=0.5V
	V_{OL2}	10	16	22	mA	OEO,LEO1,LEO1,AO,BO	
动态电流损耗	Idd _{dyn}	-	-	300	υA	-	无负载
内部振荡频率	Fvco	1.8	2	2.2	υS	-	

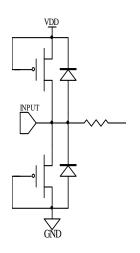
表三 电气特性参数 (Ta=-40℃~+85℃, VDD=5V, Vss=0V)

管脚定义

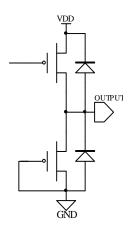
管脚功能定义

管脚编号	管脚符号	管脚 类型	管脚功能说明
1、14、15、 28、	VDD	Р	逻辑电源电压,5V
2	Al	I	1/4 扫描输入端 AI, 在 16mS AI 不更新数据时看门狗自动关闭 PO-P3 输出
3	BI	I	1/4 扫描输入端 BI
4	GEI	I	PMOS 使能端,高电平有效。当 GEI 为高电平时,P0~P3 会被打开,当 GEI 为低电平时,P0~P3 输出会被关闭

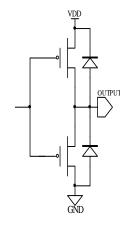
©Titan Micro Electronics


5	RDI	ı	数据信号检测器 PDI 按上弧描细绘山	
	.,	1	│数据信号输入端 RDI,接上级模组输出	
6	P0	0	N驱动输出端,PMOS 输出	
7	P0	0		
8	P1	0	│ ・驱动输出端,PMOS 输出	
9	P1	0		
10	BDI		数据信号输入端 BDI,接上级模组输出	
11	CLKI	I	数据时钟信号输入端 CLKI,时钟上升时移位数据,内置 2K 上拉电阻	
12	LEI	I	数据锁存控制信号输入端,内置 2K 上拉电阻	
13	LEO2	0	数据锁存控制信号缓冲输出 2,接下一模组芯片 LEI	
16	CLKO2	0	数据时钟信号缓冲输出 2,接下一模组芯片 CLKI	
17	LEO1	0	数据锁存控制信号缓冲输出 1	
18	CLKO1	0	数据时钟信号缓冲输出丨	
19	BDO	0	BDI 数据信号缓冲输出	
20	P2	0	· 驱动输出端,PMOS 输出	
21	P2	0	↑ 巡△川利山坳, 「MO3 制山 │	
22	P3	0	마소 30MA 보다 의대 소개 20MA	
23	P3	0	驱动输出端,PMOS 输出	
24	RDO	0	RDI 数据信号缓冲输出	
25	GEO	0	GEI 数据信号缓冲输出,接下一模组芯片 GEI	
26	ВО	0	BI 数据信号缓冲输出,接下一模组芯片 BI	
27	AO	0	AI 数据信号缓冲输出,接下一模组芯片 AI	
散热底板	GND	Р	逻辑电源地。	

TA1671 管脚功能定义 表四



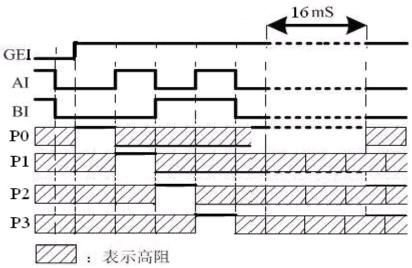
在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取 一切适当的集成电路预防处理措施,如果不正当的操作和焊接,可能会造成 ESD 损坏或者性能下降, 芯 片无法正常工作。


输入及输出等效电路

图二 输入管脚图

图三 驱动输出管脚图

图四 缓冲输出管脚图

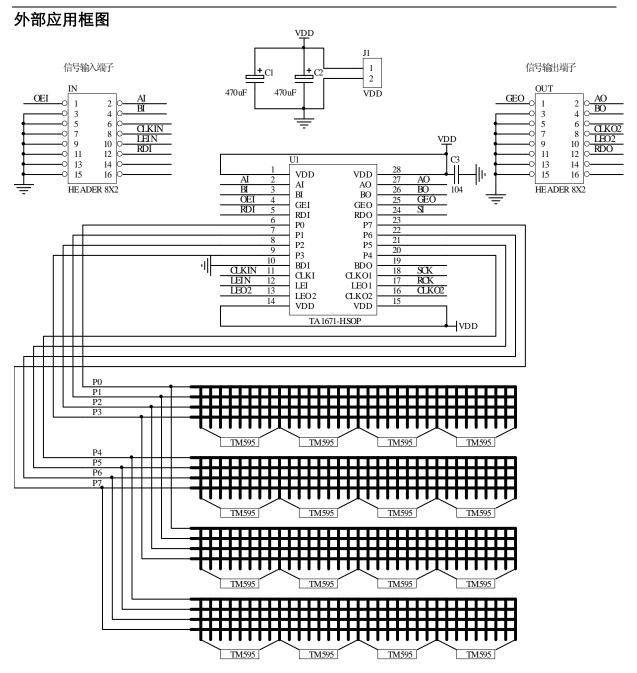

真值表

GEI=1:

AB	00	10	01	11
Y0	1	Z	Z	Z
Y1	Z	1	Z	Z
Y2	Z	Z	1	Z
Y3	Z	Z	Z	1

TA1671 功能表 表五

时序图

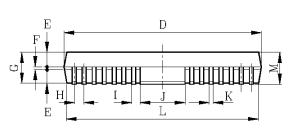


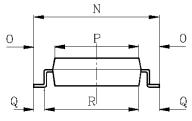
图五 TA1671 数据输入输出时序图

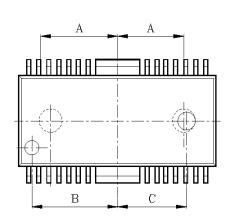
注意: 若在数据传输 16mS 内 AI 信号无变化时 PO-P3 输出全为高阻态, 此为防止长时间打开一个 端口,进而造成这个端口所控制的灯常亮而烧坏。

©Titan Micro Electronics www.titanmec.com

32×16 LED点阵 图六 P10 方案接线原理图


▲ 注意:


- 1、滤波电容在 PCB 板布线应尽量靠近芯片放置, VDD 与 GND 回路越短, 滤波效果越好。
- 2、整块模组的电流必经从 TA1671 的 4 个 VDD 管脚输入, 通过 P0 P7 八个 PMOS 管输出, PCB 布线时线路应尽量加宽,使在瞬态大电流导通时减小 PCB 板线上压降。


©Titan Micro Electronics

封装示意图 (HSOP28)

DIM	MILLIMETERS			
A	6.20			
В	7.70			
С	6.50			
D	18.40 ± 0.05			
E	0.973± 0.030			
F	0.254± 0.030			
G	2.20± 0.05			
Н	0.80 ± 0.05			
I	0.80			
J	5.20			
K	0.40+0.10/-0.05			
L	16.00			
M	2.50 MAX.			
N	10.0± 0.20			
0	1.25			
Р	7.50± 0.05			
Q	0.80			
R	8.40			

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

©Titan Micro Electronics www.titanmec.com V1.2

修订历史

版本	发行日期	修订简介
V1.0	2012-05-08	正式版发行
V1.1	2012-05-09	改版发行

©Titan Micro Electronics www.titanmec.com